Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
4.
Medicine (Baltimore) ; 103(9): e37256, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428851

RESUMEN

Environmental concerns, especially global warming, have prompted efforts to reduce greenhouse gas emissions. Healthcare systems, including anesthesia practices, contribute to these emissions. Inhalation anesthetics have a significant environmental impact, with desflurane being the most concerning because of its high global warming potential. This study aimed to educate anesthesiologists on the environmental impact of inhalation anesthetics and assess changes in awareness and practice patterns, specifically reducing desflurane use. This study included data from patients who underwent surgery under general anesthesia 1 month before and after education on the effects of inhalation anesthetics on global warming. The primary endpoint was a change in inhalational anesthetic use. Secondary endpoints included changes in carbon dioxide equivalent (CO2e) emissions, driving equivalent, and medical costs. After the education, desflurane use decreased by 50%, whereas sevoflurane use increased by 50%. This shift resulted in a reduction in the overall amount of inhalational anesthetics used. The total CO2e and driving-equivalent values decreased significantly. The cost per anesthesia case decreased, albeit to a lesser extent than expected. Education on the environmental impact of inhalation anesthetics has successfully altered anesthesiologists' practice patterns, leading to reduced desflurane usage. This change has resulted in decreased CO2e emissions and has had a positive effect on mitigating global warming. However, further research is required to assess the long-term impact of such education and the variability in practice patterns across different institutions.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Humanos , Desflurano , Estudios Retrospectivos , Calentamiento Global/prevención & control , Huella de Carbono , Quirófanos
6.
Nature ; 626(7999): 555-564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356065

RESUMEN

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Asunto(s)
Bosques , Calentamiento Global , Árboles , Sequías/estadística & datos numéricos , Retroalimentación , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Árboles/crecimiento & desarrollo , Incendios Forestales/estadística & datos numéricos , Incertidumbre , Restauración y Remediación Ambiental/tendencias
10.
Nature ; 625(7994): 293-300, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200299

RESUMEN

Documenting the rate, magnitude and causes of snow loss is essential to benchmark the pace of climate change and to manage the differential water security risks of snowpack declines1-4. So far, however, observational uncertainties in snow mass5,6 have made the detection and attribution of human-forced snow losses elusive, undermining societal preparedness. Here we show that human-caused warming has caused declines in Northern Hemisphere-scale March snowpack over the 1981-2020 period. Using an ensemble of snowpack reconstructions, we identify robust snow trends in 82 out of 169 major Northern Hemisphere river basins, 31 of which we can confidently attribute to human influence. Most crucially, we show a generalizable and highly nonlinear temperature sensitivity of snowpack, in which snow becomes marginally more sensitive to one degree Celsius of warming as climatological winter temperatures exceed minus eight degrees Celsius. Such nonlinearity explains the lack of widespread snow loss so far and augurs much sharper declines and water security risks in the most populous basins. Together, our results emphasize that human-forced snow losses and their water consequences are attributable-even absent their clear detection in individual snow products-and will accelerate and homogenize with near-term warming, posing risks to water resources in the absence of substantial climate mitigation.


Asunto(s)
Actividades Humanas , Nieve , Meteorología , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
11.
Nature ; 626(7997): 45-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297170

RESUMEN

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Asunto(s)
Contaminación Ambiental , Objetivos , Plásticos , Reciclaje , Desarrollo Sostenible , Biomasa , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Contaminación Ambiental/economía , Contaminación Ambiental/legislación & jurisprudencia , Contaminación Ambiental/prevención & control , Contaminación Ambiental/estadística & datos numéricos , Combustibles Fósiles , Calentamiento Global/prevención & control , Gases de Efecto Invernadero/análisis , Plásticos/síntesis química , Plásticos/economía , Plásticos/metabolismo , Plásticos/provisión & distribución , Reciclaje/economía , Reciclaje/legislación & jurisprudencia , Reciclaje/métodos , Reciclaje/tendencias , Energía Renovable , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Tecnología/economía , Tecnología/legislación & jurisprudencia , Tecnología/métodos , Tecnología/tendencias
12.
Nature ; 625(7993): 79-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093013

RESUMEN

Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1-4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10-13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14-16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth's history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.


Asunto(s)
Secuestro de Carbono , Carbono , Suelo , Humedales , Altitud , Carbono/metabolismo , Clima , Mapeo Geográfico , Calentamiento Global/prevención & control , Gases de Efecto Invernadero/metabolismo , Hidrología , Incendios Forestales
18.
Nature ; 624(7990): 92-101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957399

RESUMEN

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Restauración y Remediación Ambiental/tendencias , Desarrollo Sostenible/tendencias , Calentamiento Global/prevención & control
19.
Nature ; 623(7989): 982-986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030781

RESUMEN

Growing consumption is both necessary to end extreme poverty1and one of the main drivers of greenhouse gas emissions2, creating a potential tension between alleviating poverty and limiting global warming. Most poverty reduction has historically occurred because of economic growth3-6, which means that reducing poverty entails increasing not only the consumption of people living in poverty but also the consumption of people with a higher income. Here we estimate the emissions associated with the economic growth needed to alleviate extreme poverty using the international poverty line of US $2.15 per day (ref. 7). Even with historical energy- and carbon-intensity patterns, the global emissions increase associated with alleviating extreme poverty is modest, at 2.37 gigatonnes of carbon dioxide equivalent per year or 4.9% of 2019 global emissions. Lower inequality, higher energy efficiency and decarbonization of energy can ease this tension further: assuming the best historical performance, the emissions for poverty alleviation in 2050 will be reduced by 90%. More ambitious poverty lines require more economic growth in more countries, which leads to notably higher emissions. The challenge to align the development and climate objectives of the world is not in reconciling extreme poverty alleviation with climate objectives but in providing sustainable middle-income standards of living.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Política Ambiental , Calentamiento Global , Gases de Efecto Invernadero , Pobreza , Dióxido de Carbono/análisis , Desarrollo Económico/estadística & datos numéricos , Desarrollo Económico/tendencias , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Gases de Efecto Invernadero/análisis , Renta , Pobreza/prevención & control , Pobreza/estadística & datos numéricos , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...